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Abstnct-A dynamic convergence thereon is proven for a class of visco-plastic constitutive equations
involvilll internal state variables. which provides an extension of a result due to Martin(l). The class of
constitutive equation. which includes the Malvern material when effective plastic strain is adopted as the state
variable. is expressed in terms of a Row potential. For a simple model structure both convergence and
divergence is demonstrated. The example also demonstrates that the theorem provides a suflicient but not a
necessary condition for convergence. as convergence can occur even when the conditions of the theorem are
not satisfied.

I. INTRODUCTION
During the last ten years approximate techniques have been developed by Martin, Symonds and
others[l-05] which provide solutions to the problem of a structure subjected to an initial
impulse. The technique employed, the "mode"solution method, derives from an observation by
Martin [J], that structures subjected to differing initial distributions of velocity have convergent
velocity fields during the deformation process. Under some circumstances the velocities may
converge to a "mode" solution which is provided by the solution for a particular distribution of
initial velocities, and in other circumstances the "mode" solutions are defined by the extremal
of a functional of the velocity distribution[3, 6]. The technique has been ejeveloped for large
deformation of structures [05], and provides a simple direct method of assessina the most
significant features of the deformation of impulsively loaded structures and obviates the need
for a complete analysis.

The theory has, however, been developed only for constitutive relationships for which
either the inelastic strain or strain rate is given in terms of the instantaneous stress. Although a
wide class of material models fall within this category (elastic, perfectly plastic, deformation
theory plastic, visco-rigid plastic and viscous materials), the important class of work and strain
hardening viscoplastic models are excluded.

The purpose of the paper is to present extensions of the convergence proof of Martin [I] to a
class of state variable equations which may be expressed in terms of a dissipation potential.
This class has been discussed by Ponter[7] for quasi-static loadina of a body. For uniaxial
stress u with resulting elastic strain e and inelastic strain v, the constitutive relationship take
the form

E=e+ v, e=Gu

. a
s=- asO(u,S)

(I)

(2)

(3)

where E denotes the total strain, G the elastic compliance and 0 a potential function of stress
and a state variable S. By choosing a particular state variable, eqn (2) and (3) ·yield a specific
functional form for the potential O. For example, we may choose

S =I(v) (4)

where I is some arbitrary function, and restrict stress histories to these for which u > 0 and v
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increases in time. Eliminating v between (2) and (3) and using (4) results in the differential
equation

The general solution of (5) is given by

0(0', S) =0(0'- g(V»

where

Subsitituting this solution into (2) yields

Ii = Ot(u - g(v»

(5)

(6)

(7)

(8)

which may be recognized as Malvern's[S] relationship where g(v) is the static yield stress
corresponding to monotonic ftow to inelastic strain v, and 0' - g( v) is the dynamic overstress.

Hence the eqn (2) and (3) provided a limited but important class of constitutive relationship,
and we propose to show that this class can possess convergence properties for dynamically
loaded body if 0 is a convex function of its arguments.

In Section 2 some results from [7] are reviewed and the inversion of the constitutive
relationship is discussed. In Section 3 three particular cases are described, isotropic and
kinematic strain hardening and work hardening visco-plastic models. In Section 4 the con
vergence theorem is formally derived for the general class. This is followed by Section 5 where
a simple structure is analyzed for situations where sufficient conditions for the convergence
theorem are both satisfied and violated. This is achieved by varying the material parameters in a
simple strain hardening visco-plastic constitutive relationship. In particular, the conditions are
violated for materials whose static plastic stress strain curve has increasing slope with strain.
For sufficiently pronounced strain hardening characteristics nonconvergence is exhibited by the
model although we also find cases where convergence occurs.

2. ACLASS OF CONSTITUTIVE RELATIONS

We are concerned with the small strain behavior of a material with inelastic strain rates
which are expressed in terms of a simple potential function O(Uii' S,) where Uii is the current
stress and S, is the current value of a set of state variables. The total strain Eij is expressed as
the sum of a linear elastic strain eij and inelastic strain Vir

and the inelastic strain rate Vii and the state rates S, are expressed in terms of n as:

. aO
Vii=~'

QUij

. an
S, =- as,'

(9)

(10)

(lla)

(lIb)

The quantities S, may form a set of scalar quantities or the components of tensor quantities
with respect to some fixed axis. The eqn (11) defines a restricted class of consitutive
relationships which certainly contain some well known forms [7], but excludes others. We are
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exploiting the particular strong properties of (II) which allow extension of known results to a
wider, but incomplete, class of constitutive relationships.

Before discussing particular forms of eqn (11), we review properties of n derived elsewhere.
In [7] it was shown that n is a convex function of both O'ij and S/ provided the following
inequalities hold: at constant state a small change in dU;j results in a corresponding change dV;j

so that

(12)

and for constant O'ij, a small change in state dSI produces a change in $/ sucb that

(3)

From (12) and (13) the convexity of n may be derived.

Reversing the roles of (O')j. SI') and (O'~. S?) in (14) and adding the resulting inequality to (14)
results in the inequality;

(15)

Equality in (14) and (15) may occur for stresses and states at which equality occurs in (12) and
(13) for non-zero dUll and dSI• In inequality (12) such conditions would occur in the rigid region
for material with an initial yield surface and in (13) for states of stress and states for which the
state is frozen.

The sign of inequality (13) is influenced by the notion of strain hardening; the rate of increase
of the state quantities tends to decrease as the state variables increase. If the inequality were
reversed then n would be convex in O'ij and concave in S"

The eqn (II) may be inverted without difficulty. We define dual potentials by

so that

$1=0, (16)

From (17) we see that

(l7)

(18)

and hence from (1 I), (16) and (18),

0"11 =(~~) .
oVIj s,

(l9a)

(19b)

By analogous arguments to those used for deriving the convexity of n we conclude that fi is
convex in VI/ but concave in 51'

(20)
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It is worth noting that if inequality (13) was reversed thennwould be convex in 'Oil and 5" Hence the
reversal on inequality (13) interchanges the convexity properties of 0 andnand it is clear that both
o and fi cannot be convex together.

3. PARTICULAR FORMS OF THE CONSTITUTIVE RELATIONSHIP

Specifications of the slate variable 5, gives further restriction on the constitutive relation
ship (11) manifested in the form of the dependence of 0 on the deviatoric stress 0':1 and 5,. We
consider three special cases. involving a single state variable. corresponding to isotropic and
kinematic strain hardening and work hardening.

(a) Isotropic strain-hardening
We define a single state variable as some function of an effective strain v:

S=WV)

where

(21)

(22)

where", is a homogeneous scalar function of degree one. Further 0 is assumed to be a function
of tP(O'Ij) where tP is a homogeneous of degree one. Substituting these conditions into the
constitutive relationships (II) and eliminating Vii yields.

(23)

We term conjugate those'" and tP for which A is a constant. which we may take as unity
without loss of generality. For example

(24)

(25)

form conjugate pairs.
The general solution of (23) is given by

and the constitutive relationship (lla) and (lIb) reduce to:

. 0' iJtP
Vii = -;-;-.

uO'il

(26)

(27)

(28)

This general form corresponds to a generalization of a Malvern material {8]. and g may be
interpreted as a measure of the history dependent "static" ftow stress which increases with
increasing strain.

The dual potential nmay be most easily derived by first assuming v= O. and hence

(29)
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Substituting (q, - g) for. r/J in (29) and noting (17) we obtain

{}(V;jo v) = O*(y,) +g(v)y,.

797

(30)

The sufficient conditions for the convexity of 0, inequalities (12) and (13), may be translated
into restrictions on the general function 0 and g:

d(T1jdV;j =0"(dr/J)2;;o. 0

dSdS =! g"O' - g-20" ~O
2

(31)

(32)

where use has been made of eqns (21), (22) and (28). Hence sufficient conditions for the
convexity of 0 are given by

0';;0.0, 0";;0.0, g';;o.O and g"~O, (33)

and are equivalent to the conditon that 0(r/J) shall be convex and g(Ii) shall be concave
functions of their arguments. In fact, the convexity of 0 may be derived directly from these
conditons and a direct and simple proof is gi'!en in the appendix.

The meaning of these inequalities in terms of uniaxial behavior of the model may be seen
from Figs. 1and 2. Stress strain curves at constant strain rates must have positive slope (g' ;;llo 0) but
must decrease with increasing strain (g" ~ 0). This condition is usually observed in metals and
alloys, but mild steel provides a notable exception. On the other hand, stress-strain rate curves at
constant strain must have positive slope (O";;llo 0) but the slope may either increase ordecrease with
increasing strain rate. Hence the inequalities (33) place a more significant restriction on the strain
hardening characteristics than on the strain rate sensitivity of the material.

A particularly simple form of 0 which contains a sufficient number of parameters to allow the
description of many materials over, at least, some range of stress-strain and strain rate is given
by;

which gives rise to the uniaxial relationship;

0"

[ V ]"'"(TIl> (To + iT ~: •

°11=glvn l,vll=o

(35)

V11

PII. 1. For convex a, stress-strain curves at constant strain rate must have positive slope, decreasing with
increasiq strain VII.



798

0

"

A.R.S.PONTEll

Vn constont

v" =0

V"
Fig. 2. For convex n, stress-strain rate curves at constant straiD must have positive slope, but may either

increase or decrease with increasing strain rate IiII'

The "static" stress-strain curve (VII =0) is given by

!ll =[0'11 : 0'0]"',
Vo 0'

and n>0, m> 1are sufficient condition for the convexity of O.
A simple relationship, without an initial yield stress is provided by

(36)

i.e.

=0

[
-]1/4

~>O'o :0

[
-]1/4

, t/J :Ei 0'0 :0

V [0' [v ]1/4]'-:U= _II_...!! ; P >0, q >0.Vo 0'0 Vo (38)

Figure 3 shows the correlation of both (35) and (38) with data for 304 stainless steel at 700F,
from the data of Hauser[9]. Clearly eqn (35) provides the better result, but the more restricted
form (38) provides a quite satisfactory fit to the data.

For both eqns (34) and (38) the state variable S may be derived from (26):

S =[ a ]1/2 ( 2m ) 6(1-",>12",
mvol1'" m +1 •

where m=q and a=0'0 for eqn (38).

ao
OIKSll

E034, v. "0,0.' 25.63 KSl.l,. 20.68 KSI.... 00.04 .,,,'.075,.0""

E03'; V. 0,03, 4. 3OKSI, v'O.04.qo 4.3, p07.'

30 '-0---,..."..--,...".---.-.--_--....,.---......._-.-.,.,....-
~ ~ ~ ~ w ~ ~

VISit")

rll. 3. Comparison of eqns (34) and (38) with test data for 304 Stainless Steel (Hauser [9J).



Dynamic behavior or viscoplastic materials 799

(b) Kinematic-strain hardening
Kinematic behavior may be generated by assuming 5/ are the components of a second order

tensor quantity 5jj• The simplest form occurs when

where C denotes a constant. The state equations then yield that

0= O(ulj - C Vjj)

and 0 is convex, provided 0" ~ 0 and C > o.

(39)

(c) Work hardening
Constitutive equations in which the state is given by the plastic work have been discussed

by Perzena[10] and Bodner and Partom [11]. If in eqn (11) we choose

(40)

and assume that 0 =O(</>(Uij), S), then eqns (11) yield, on eliminating li,

(41)

which possess the general solution;

(42)

The strain rate equation is now given by

(43)

This equation is of a similar form to that suggested by Bodner and Partom [11], but their
equation cannot be expressed in terms of a potential of the form (42). As (42) and (43) appear to
be essentially new, their properties will not be pursued further in any detail. It is worth noting,
however, that sufficient conditions for convexity of 0 are given by the restriction that 0 shall
be a convex function of </> and a concave function of S. The resulting restriction becomes a
combined restriction on the form of 0 and g(w) and will not be pursued here.

~THECONVERGENCETHEOREM

Consider a body of volume V surface fI subjected to an impulse at time t = 0 which gives
rise to an initial velocity distribution "/(0). Surface traction 1; act over part of fI, fiT and body
force Fi(O act within V. Over the remainder of fI, which we denote by fl., displacements Uj

remain zero.
The theorem concerns two such bodies subjected to identical conditions in all respects

except the conditions at time t "" O. One body has initial stress O'~, velocity Ii1and state 5,1,
whereas the second body has differing initial value O'~, u~, S? We are concerned with the
relationship between the subsequent histories in the two bodies.

We first note the following relationship, which follow from the constitutive relationship (9)
and (10) and the principle of virtual velocities:

f ( I 2)(.J '2)d- dAr 1 2] f (I 2)('1 '2)dV+ d A[ J 2]V 0'0 -O'lj Elj-Eij V ==-dt u Ui -UI "" V O'Ij-O'ij Vij- Vij dt' O'ij-O'lj

(44)
ss Vol. 16. No. 9-C
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where

and

A. R. S. PONTEl

A[ 'I '2] f I (.J '2)('1 '2)dV• Uj - Uj = v 2p Uj - Uj Uj - Uj (45)

(46)

Hence A.(u/) denotes the total kinetic energy associated with velocity distribution U, and A«(O'lj)
denotes the total strain energy associated with stress distribution O'ij'

Combining (44) with the convexity condition (IS) yields

dA:!l'tO (47)
dt

where

A= AII(Ujl - ul)+ A«(O'I} - O'~)+ A,(S,' - Sh (48)

and

A, =Iv ~ (Ski - Sl)(Skl
- Sk2)d V.

Further

A;;;,O. (49)

Equality in (47) occurs only when O'b =O'~ and S,' =Sl for strictly convex nand when iii =U2'
Equality occurs in (49) under the same conditions. Hence O'b. uJ} and S,' approach O'~. Ub and
Sl in the sense that A must reduce in magnitude. It is clear that either A« or All or A, may
increase in value during the deformation process. Indeed. if S/1=Sl at t =O. initially A, will
certainly increase but less rapidly than the combined decrease of All and Ar

Our principal interest will be in the case where the electric term A« is negligible and
initially S,J =Sl. At t = 0 A. must desrease in time and will continue to do so until A, has
become of a similar magnitude to A.. The convergence may be expected to be initially
dominated by III approaching III and eventually Sl approaching Sl' when All is sufficiently small.
How this behavior manifests itself in the behavior of a simple structure is demostrated in the
section.

S. AN EXAMPLE

Consider the structural model shown in Fig. 4. Two masses are attached to weightless beam
of length I which is simply supported at each end.

The kinematics of the structure may be expressed in terms of the vertical displacements

Fhl ' 1'/'1
~u, ~

Am ~-~..

Fig. 4. Simple slrUcluraI model considered as an example.



Dynamic behavior of viscoplastic materials 801

VI(t) and V2(t) of the two masses. Deformation is assumed to be confined to points A and B
where hinges form which rotate with angles "'I and "'2 given by

(50)

The moments applied to these hinges are given by

(51)

where PI and P2 are the D'Alembert forces applied by the weights to the beam and hence

(52)

For the relationship between "'I and M1 we adopt a simple relationship of the form of eqn (35):

. . [IMoI (~i )I'''']ft"'; ="'0 ~ - 1- "': (M;) (53)

where ~i =f& I~il dt.
Equations (50H53) may be combined into a pair of second order differential equations for

Vi' For ~ >0 and ~ > 0, the equation takes the form

(54)

(55)

~nd similar equations hold for differing sign combinations of "'i. The equations are expressed in
terms of non-dimensional variables:

_ Pil
Pi -16M

o
'

and

In terms of these non-dimensional quantities the solution is governed by Ui at t =0, and the
material parameter m, nand A. The quantity A governs the degree of strain hardening in the
model as A = 0 corresponds to purely viscous behavior.

We may compute values of A which have some resemblences to reality by the following
approximate argument. We may identify rotation rate for the special case "I =U2' The initial
kinetic energy of the structure is then given by

K -! (. 2 • 2) _ ml .;._2
0- 2m "I +"2 - 16'I'U .
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With iJi =0 and ~i =~o then M; =2Mo where Mo is the static initial yield moment. Hence this
choice of initial velocities corresponds to a doubling of the initial yield stress. We may now
write;

A =:w where W =2MoI/I".

If ~j =0 and ~j =1/10 then again M =2Mo, a degree of strain hardening which is similar in
magnitude to that exhibited by the data of Fig. 2. Hence, for this hypothetical case, assuming 1/10
is the final rotation of the hinges the moments Mj begin and end at the same value, 2 Mo. If we
assume that on average Mj remain close to this value, the total energy dissipated in the hinges is
given by 4 Mol/lo and equals the initial kinetic energy K. Hence, A=1/32 and this value may be
expected to yield an upper limit on a reasonable range of A.

With ~I =~2 =~o, then the non-dimensional velocities at 'I" =0 are UI =U2 =4. In the
following numerical examples, we choose initial velocities which yield the same values of the
non-dimensional kinetic energy as Ul :;"2:; 4.

The eqns (54) and (.5.5) were solved numerically by treating them as first order equations
in "j and integrating to compute {3j. The time interval was reduced until the solution showed no
appreciable change in the solution. Cases were run for values of m for which the theorem
indicated convergence occured (m 2: I) and also for cases where the theorem was not valid
(m < I) to see if non-convergence could be observed.

Two combinations of the exponents nand m were studied. In all cases the value n =5 was
chosen and solutions were computed for a range of values of A for m :; 3 and m =1/3. In the
case m = 3, the conditions of the theorem were satisfied and convergence was expected,
whereas for m = 1/3 the conditions of the theorem were not satiafied and convergence mayor
may not occur. In fact, we discovered that in this later case, convergence occurred for
sufficiently small values of A but divergence occured for larger values of A.

The theorem was tested by evaluating the two solutions corresponding to "2 =0 and
UI = u2I3, such that their initial kinetic energy were the same. For m=3 the solutions for
increasing A are very similar in form and closely follow the A =0 solutions. In Fig. 5 the
displacements (Uh u2l are s~own and we see that all histories follow similar paths, except that
the final displacements are markedly affected by the value of A. For A=0.3 the final deflections
are approximately one-half the values for A =O. The velocity trajectories are shown in Fig. 6.
Strain hardening appears to have little effect on either the velocity ratio "l/li2or the displace
ment shape, but causes the structure to come to rest more quickly and with a smaller deflection.

The values of the convergence quantity 6./Kowith 'I" is shown in Fig. 7 for the extreme cases
A =0 and A =0..5. For A :; 0,6. =6.. decreases rapidly until 'I" == l..5 when it continues to decline
very slowly. For A =0..5, 6.. decreases even more quickly and, in fact, decreases throughout

u,

10

4

u,

2 4 10 12 14 16 1. 20 n 24

Fig. 5. Non-dimensional displacements (III> u21 for n=5 and m=3 for a range of values of the
non-dimensional material strain·hardening parameter A.



4

Dynamic behavior of viscoplastic materials 803

I u'C 3u
/' .

I
I

I
I

I
I

I
I

I
I

I

4

III

u.

Fig. 6. Non-dimensional velocity paths for n = S. m= 3and a rallIe of values of A.
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Fig. 7. Variation of convergance quantity 4 = 4. +4, for n = Sand m= 3.

4

/
I

I
I

I

4 5 u.

F"II. 8. Non-dimensional velocity partbs for n = 3. m= 1/3. Note wide diveraence from mode solution for
A =0.1.
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the history of the structure. ~s increases to a maximum value of less than 10% of ~(O) before
decreasing in value. Hence ~s remains very small and ~ is dominated by ~t.. It should be
emphasized that in this example, the effect of strain hardening is sufficiently great to reduce the
final displacement by a factor of two and to reduce the deformation time by a similar order of
magnitude.

These results imply that for moderate amounts of strain hardening the displacement shape
and velocity distribution are relatively insensitive to the amount of strain hardening, but the
total deflection and response time are markedly affected. This phenomenon may be explained
by the notion of mode solutions which will be discussed in a forthcoming paper.

For the case of m =1/3, we find that convergence occurs for sufficiently small values of A
as thc structure is brought to rest before the strain hardening terms are of significant magnitude.
The velocity histories for A =0.01 and 0.1 are shown in Fig. 8 and the displacements and ~'s

are shown in Figs. 9 and 10. For A =0.01 the solutions are very close to A =0 solutions.
For A =0.1, however, the solutions show non-convergent properties and have distinctly

differing properties from those for m =3. In Fig. 8 it can be seen that the velocity paths of both
solutions initially follow the parts corresponding to A =0 and subsesuently move over to and
remain close to the line U2 =3uI (i.e. 1/11 =0). This behaviour is reflected in the displacement
paths shown in Fig. 9 and imply that the total history consists of two parts. During the initial
part rfr2 remains small and during the final part rfrl remains small. This type of behaviour
contrasts strongly with mode solutions where the displacement form remains constant in time.
The fact that convergence has not occurred can be clearly seen in Fig. 10 where ~v, ~s and ~

both increase and decrease during the course of the deformation history.

12

10

4

4 10 12 14 16 18 20 22 24

Fig. 9. Non-dimensional displacements (UI> U2) for n =3 and m=1/3 for a range of values of the
non-dimensional material strain hardening parameter A.

Ah
•

10

4

Fig. 10. Variation of convergence quantity ~ =~. +~s for n= S, m= 1/3. Note non-eonvergence for T> I.
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6. CONCLUSION

A dynamic convergence theorem has been proven for a class of viscoplastic constitutive
equations involving internal state variables. The constitutive equations are expressed in terms
of a scalar potential function and particular forms are derived by assuming that the state may
be calculated from either the plastic strain, the effective plastic strain or the plastic work. For
the case of effective plastic strain the form becomes the familiar Malvern material.

For a particular simple model, structure dynamic solutions are generated for cases when the
convergence proof holds, and the resulting solutions follow closely the mode·type of solution of
a visco-plastic solid. For circumstances when the convergence proof does not hold, non
convergence can be demonstrated, although it is clear that for weak strain hardening (cor
responding to small values of the non-dimensional parameter A) convergence can occur as the
theorem is not a necessary, but only a sufficient condition for convergence.
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APPENDIX
The inequality (I4) may be derived in the case

O(O'lj. s) = O(I/1(O'ij) - g(Ii)).

and

directly from the conditions (33)

g';:O:O

g"SO

and the furtber condition that I/1(O';j) shall be convex.
Transforming g(6) = 8(s) where for A2

(AI)

(A2)

(Al)

(A4)

(AS)

(A6)

(A7)
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and

I ..
OU{S) '" 27 so.

Inequalities (Al) and (A4) imply !he convexity of n

n(~l) -O(~%)- n'(~%)(~I- ~:I)~O.

(A8)

(A9)

Similarity (A7) aOO (AS) imply the concavity of 0(5)

- (B(5 1
)- B{s:) +6'(S%)(Sl-s:l)~O. (AIO)

If.1and.' are replaced by .1_8{I I) and .2_8{$2) in (A9) and inequality (AI0) mUltiplied by n'(.~ii!:O is added to the
resulting inequality. we obtain

On further notina that

and that

and

~=-n'IJ"

then (All) becomes

as required.

(All)


